On P_s-Compact Spaces

Baravan A. Asaad, Alias B. Khalaf

*Department of Mathematics, Faculty of Science, University of Zakho, Kurdistan-region, Iraq **Department of Mathematics, Faculty of Science, University of Duhok, Kurdistan-region, Iraq

Abstract—In this paper, we introduce a new class of spaces namely P_s-compact. This class of compactness lies strictly between the classes of strongly compact and nearly compact spaces, but it is not comparable with compact space.

Index Terms—P_S-open sets, P_S-continuous functions, P_S-compact spaces, strongly compact spaces.

1 INTRODUCTION

Mashour et al. [14] and Levine [12] defined preopen and semi-open sets, respectively, which are both weaker than open sets in topological spaces. In 2009, Khalaf and Asaad [11] introduced P₅-open sets, which are stronger than preopen sets, in order to investigate the characterization of P₅-continuous functions. In [10] they have introduced the notion of almost P₅-continuous functions. Singal and Mathur [21] defined the concept of nearly compact spaces. Mashhour et al. [15] introduced the concept of strongly compact spaces. The purpose of the present paper is to introduce a new class of spaces called P₅compact. This class of spaces lies strictly between the classes of strongly compact space.

2 PRELIMINARIES

Throughout this paper, (X,τ) and (Y,σ) (or simply X and Y) denote topological spaces on which no separation axioms are assumed unless explicitly stated. If A is any subset of a space X, then Cl(A) and Int(A) denote the closure and the interior of A, respectively. A subset A of X is called preopen [14] (resp., semi-open [12], α -open [18] and regular open [22]) if A \subseteq Int(Cl(A)) (resp., $A \subseteq Cl(Int(A))$, $A \subseteq Int(Cl(Int(A)))$ and A =Int(Cl(A))). The complement of a preopen (resp., semi-open) set is called preclosed (resp., semi-closed). A subset A of X is said to be preregular [17] if A is both preopen and preclosed. A preopen subset A of X is called Ps-open [11] if for each $x \in A$, there exists a semi-closed set F such that $x \in F \subseteq A$. The complement of a Ps-open set is called Ps-closed. The intersection (resp., union) of an arbitrary collection of Ps-closed (resp., Psopen) sets in (X,τ) is Ps-closed (resp., Ps-open). A subset A of a space X is called θ -semi-open [7] if for each $x \in A$, there exists a semi-open set G such that $x \in G \subseteq Cl(G) \subseteq A$.

The Ps-closure (resp., preclosure and semi-closure) of A, denoted by PsCl(A) (resp., pCl(A) and sCl(A)), is defined as the intersection of all Ps-closed (resp., preclosed and semi-closed) sets containing A. The semi-interior of A, denoted by sInt(A), is defined as the union of all semi-open sets contained in A. A subset A of X is called regular semi-open [2] if A = sInt(sCl(A)). The complement of a regular semi-open) set is called preclosed (resp., semi-closed and regular semi-open). A point $x \in X$ is called a δ -cluster [23] of A if $A \cap U \neq \phi$ for each regular open set U containing x. The set of all δ -cluster points of A is called the δ -closed if $Cl_{\delta}(A) = A$. The complement of a δ -closed set is called δ -open. We denote the collection of all Ps-open (resp., preopen, regular open and regular semi-open) sets of X by PsO(X) (resp., PO(X), RO(X) and RSO(X)).

Recall that a space X is said to be extremally disconnected [5] if $Cl(U) \in \tau$ for every $U \in \tau$. A space X is called locally indiscrete [3] if every open subset of X is closed. A space X is said to be hyperconnected [3] if every nonempty open subset of X is dense in X. A space X is s-regular [1] if and only if for each x \in X and each open set G containing x, there exists a semi-open set H such that $x \in H \subseteq sCl(H) \subseteq G$. A space X is called semi-T₁ [13] if and only if to each pair of distinct points x, y of X, there exists a pair of semi-open sets, one containing x but not y and the other containing y but not x. A function $f: X \rightarrow Y$ is said to be Ps-continuous [11] (resp., precontinuous [14] and θ scontinuous [9]) if for each $x \in X$ and each open set V of Y containing $f(\mathbf{x})$, there exists a Ps-open (resp., preopen and θ -semiopen) set U of X containing x such that $f(U) \subseteq V$. A function f: $X \rightarrow Y$ is said to be almost Ps-continuous [10] (resp., almost precontinuous [16] and almost θ s-continuous [8]) if for each x \in X and each open set V of Y containing f(x), there exists a Psopen (resp., preopen and θ -semi-open) set U of X containing x such that $f(U) \subseteq Int(Cl(V))$

Recall that a filter base \Im is said to be p-converges [6] (resp., pre- θ -converges [4] and δ -converges [23]) to a point $x \in X$ if for every preopen (resp., preopen and open) set V containing x, there exists an $F \in \Im$ such that $F \subseteq V$ (resp., $F \subseteq pCl(V)$ and $F \subseteq Int(Cl(V))$). A filter base \Im is said to be p-accumulates [6] (resp., pre- θ -accumulates [4] and δ -accumulates [23]) to a

[•] Corresponding author: Baravan A. Asaad E-mail: baravan.asaad@gmail.com

point $x \in X$ if $F \cap V \neq \phi$ (resp., $F \cap pCl(V) \neq \phi$ and $F \cap$ Int(Cl(V)) $\neq \phi$), for every preopen (resp., preopen and open) set V containing x and every $F \in \mathfrak{I}$. A topological space (X, τ) is said to be strongly compact [15] (resp., α -compact [4]) if every preopen (resp., α -open) cover of X has a finite subcover. A subset A of a space X is said to be N-closed [19] (resp., quasi-H-closed [20]) relative to X if for every cover {V $\alpha : \alpha \in \Delta$ } of A by open sets of X, there exists a finite subset Δ_0 of Δ such that $A \subseteq \cup$ {Int(Cl(V α)) : $\alpha \in \Delta_0$ } (resp., $A \subseteq \cup$ {Cl(V α) : $\alpha \in \Delta_0$ }). A space X is said to be nearly compact [21] if X is N-closed relative to X.

Lemma 2.1 [11]: The following statements are true:

- **1)** If a space X is semi-T 1, then PsO(X) = PO(X).
- **2)** If a space X is locally indiscrete, then $PsO(X) = \tau$.
- **3)** If a space X is s-regular, then $\tau \subseteq PsO(X)$.
- 4) A space X is hyperconnected if and only if $P_sO(X) = {\phi, X}$.

Lemma 2.2 [11]: Let (Y, τ_Y) be a subspace of a space (X, τ) and A $\subseteq X$. Then the following properties are hold:

- **1)** If $A \in PsO(Y)$ and $Y \in RO(X)$, then $A \in PsO(X)$.
- **2)** If $A \in PsO(X)$ and $Y \in RO(X)$, then $A \cap Y \in PsO(X)$.
- 3) If either $Y \in RSO(X)$ or $Y \in \tau$ or Y is a preregular, and $A \in PsO(X)$, then $A \cap Y \in PsO(Y)$.
- 4) If $Y \in RO(X)$, then $PsO(Y) = PsO(X) \cap Y$.

Theorem 2.3 [11]: If $f : X \rightarrow Y$ is a continuous and open function and V is a Ps-open set of Y, then $f^{-1}(V)$ is a Ps-open set of X.

Theorem 2.4 [11]: Let $f: X \rightarrow Y$ be a function and X be an extremally disconnected space. If f is θ s-continuous (resp., almost θ s-continuous), then f is Ps-continuous (resp., almost Ps-continuous).

3 Ps-Compact Spaces

In this section, we introduce a new class of topological spaces called Ps-compact. This class of spaces lies strictly between the classes of strongly compact space and nearly compact space, but it is not comparable with compact space.

Definition 3.1: A filter base \Im in a topological space (X,τ) Ps-converges (resp., Ps- θ -converges) to a point $x \in X$ if for every Ps-open set V containing x, there exists an $F \in \Im$ such that $F \subseteq V$ (resp., $F \subseteq PsCl(V)$).

Definition 3.2: A filter base \Im in a topological space (X,τ) Ps-accumulates (resp., Ps- θ -accumulates) to a point $x \in X$ if $F \cap V \neq \varphi$ (resp., $F \cap PsCl(V) \neq \varphi$), for every Ps-open set V containing x and every $F \in \Im$.

It is clear from the above definitions that Ps-converges (resp., Ps-accumulates) of filter bases in topological spaces implies Ps- θ -converges (resp., Ps- θ -accumulates), but the converses are not true in general as shown in the following example.

Example 3.3: Let X = {a, b, c, d}, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\Im =$

{{a, c}, {a, b, c}, {a, c, d}, X}. Then $PsO(X) = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$. Thus, $\Im Ps-\theta$ -converges to a, but \Im does not Ps-converges to a, because the set {a} is Ps-open containing a, there is no an $F \in \Im$ such that $F \subseteq \{a\}$. Also $\Im Ps-\theta$ -accumulates to b, but \Im does not Ps-accumulates to b, because the set {b} is Ps-open containing b, there exists an $F \in \Im$ such that $F \cap \{b\} = \phi$.

The following proposition is an easy consequence of the above definitions.

Proposition 3.4: If \Im is a maximal filter base in a topological space (X, τ), then \Im Ps-converges (resp., Ps- θ -converges) to a point $x \in X$ if and only if \Im Ps-accumulates (resp., Ps- θ -accumulates) to a point x.

Lemma 3.5: Let \Im be a filter base in a topological space (X, τ). If \Im p-converges (resp., pre- θ -converges) to a point $x \in X$, then \Im Ps-converges (resp., Ps- θ -converges) to a point x.

Proof: Suppose that \Im p-converges (resp., pre- θ -converges) to a point $x \in X$. Let V be any Ps-open set containing x, then V is preopen set containing x. Since \Im p-converges (resp., pre- θ -converges) to a point $x \in X$, there exists an $F \in \Im$ such that $F \subseteq V$ (resp., $F \subseteq pCl(V) \subseteq PsCl(V)$). This shows that \Im Ps-converges (resp., Ps- θ -converges) to a point x.

The following example shows that the converse of Lemma 3.5 is not true in general.

Example 3.6: Let X = {a, b, c, d}, $\tau = \{\varphi, X, \{d\}, \{b, c\}, \{b, c, d\}, \{a, b, c\}\}$ and $\Im = \{\{a, c\}, \{a, c, d\}, \{a, b, c\}, X\}$. Then PsO(X) = { φ, X , {d}, {a, b, c}}. Thus, \Im Ps-converges (resp., Ps- θ -converges) to a, but \Im does not pre- θ -converges to a and hence does not p-converges to a, because the set {a, b} is preopen containing a, there is no an F $\in \Im$ such that F \subseteq {a, b} (resp., F \subseteq pCl({a, b}) = {a, b}).

Lemma 3.7: Let \Im be a filter base in a topological space (X,τ) . If \Im p-accumulates (resp., pre- θ -accumulates) to a point $x \in X$, then \Im Ps-accumulates (resp., Ps- θ -accumulates) at a point x. **Proof:** The proof is similar to Lemma 3.5.

The converse of Lemma 3.7 is not true in general as shown by the following example.

Example 3.8: Consider the space (X,τ) given in Example 3.6. Let $\Im = \{\{a, c\}, \{a, c, d\}, \{a, b, c\}, X\}$. Then \Im Ps-accumulates (resp., Ps- θ -accumulates) to b, but \Im does not pre- θ -accumulates to b and hence does not p-accumulates to b, because the set $\{b, d\}$ is preopen containing b, there exists an $F \in \Im$ such that $F \cap pCl(\{b, d\}) = \varphi$ and hence $F \cap \{b, d\} = \varphi$.

Lemma 3.9: Let \Im be a filter base in a topological space (X, τ) . If \Im Ps-converges to a point $x \in X$, then \Im δ -converges to a point x.

Proof: Suppose that \Im Ps-converges to a point $x \in X$. Let V be any open set containing x, then $Int(Cl(V)) \in RO(X)$. Since

 $RO(X) \subseteq P_{s}O(X)$ in general, so $Int(Cl(V)) \in P_{s}O(X)$. Since $\Im P_{s}$ converges to a point $x \in X$, there exists an $F \in \Im$ such that $F \subseteq$ Int(Cl(V)). This shows that $\Im \delta$ -converges at a point x.

Lemma 3.10: Let \mathfrak{I} be a filter base in a topological space (X, τ) . If \mathfrak{I} Ps-accumulates to a point $x \in X$, then \mathfrak{I} δ -accumulates to x.

Proof: The proof is similar to Lemma 3.9.

Proposition 3.11: Let \Im be a filter base in a topological space (X,τ) and E is any semi-closed set containing x. If there exists an $F \in \Im$ such that $F \subseteq E$ (resp., $F \subseteq PsCl(E)$), then \Im Ps-converges (resp., Ps- θ -converges) to a point $x \in X$.

Proof: Let V be any Ps-open set containing x, then for each $x \in V$, there exists a semi-closed set E such that $x \in E \subseteq V$. By hypothesis, there exists an $F \in \mathfrak{I}$ such that $F \subseteq E \subseteq V$ (resp., $F \subseteq P_sCl(E) \subseteq P_sCl(V)$) which implies that $F \subseteq V$ (resp., $F \subseteq P_sCl(V)$). Hence \mathfrak{I} Ps-converges (resp., $P_s-\theta$ -converges) to a point $x \in X$.

Proposition 3.12: Let \Im be a filter base in a topological space (X,τ) and E is any semi-closed set containing x. If there exists an $F \in \Im$ such that $F \cap E \neq \varphi$ (resp., $F \cap P_sCl(E) \neq \varphi$), then \Im is Ps-accumulation (resp., Ps- θ -accumulation) to a point $x \in X$. **Proof:** The proof is similar to Proposition 3.11.

Theorem 3.13: If a function $f : X \rightarrow Y$ is Ps-continuous (resp., almost Ps-continuous), then for each point $x \in X$ and each filter base \Im in X Ps-converging to x, the filter base $f(\Im)$ is convergent (resp., δ -convergent) to f(x). Furthermore, if X is submaximal, then the converse also holds.

Proof: Suppose that x belongs to X and \Im is any filter base in X which Ps-converges to x. By the Ps-continuity (resp., almost Ps-continuity) of *f*, for any open set V in Y containing *f* (x), there exists $U \in PsO(X)$ containing x such that $f(U) \subseteq V$ (resp., $f(U) \subseteq Int(Cl(V))$). But \Im is Ps-convergent to x in X, then there exists an $F \in \Im$ such that $F \subseteq U$. It follows that $f(F) \subseteq V$ (resp., $f(F) \subseteq Int(Cl(V))$). This means that $f(\Im)$ is convergent (resp., δ -convergent) to f(x).

Now suppose that X is submaximal. Let x be a point in X and V any open set containing f(x). Since X is submaximal, then every Ps-open set of X is open in X. If we set $\Im = P_sO(X)$ containing x, then \Im will be a filter base which Ps-converges to x. So there exists U in \Im such that $f(U) \subseteq V$ (resp., $f(U) \subseteq$ Int(Cl(V))). Therefore, f is Ps-continuous (resp., almost Ps-continuous).

Definition 3.14: We say that a topological space (X,τ) is Pscompact if for every Ps-open cover $\{V_{\alpha}: \alpha \in \Delta\}$ of X, there exists a finite subset Δ_0 of Δ such that $X = \bigcup \{V_{\alpha}: \alpha \in \Delta_0\}$.

Theorem 3.15: If every semi-closed cover of a space X has a finite subcover, then X is Ps-compact.

Proof: Let $\{V_{\alpha}: \alpha \in \Delta\}$ be any Ps-open cover of X, then for each

 $x \in X$, there exists $\alpha \in \Delta_0$, $x \in V_{\alpha(x)}$, there exists a semi-closed set $F_{\alpha(x)}$ such that $x \in F_{\alpha(x)} \subseteq V_{\alpha(x)}$. So the family { $F_{\alpha(x)}$: $x \in X$ } is a cover of X by semi-closed set, then by hypothesis, this family has a finite subcover such that $X = \{F_{\alpha(xi)}: i = 1, 2, ..., n\} \subseteq \{V_{\alpha(xi)}: i = 1, 2, ..., n\}$. Therefore, $X = \{V_{\alpha(xi)}: i = 1, 2, ..., n\}$. Hence X is Ps-compact.

The following lemma shows the relation between strongly compact and Ps-compact spaces.

Lemma 3.16: If a topological space (X,τ) is strongly compact, then it is Ps-compact.

Proof: Let { V_{α} : $\alpha \in \Delta$ } be any Ps-open cover of X. Then { V_{α} : $\alpha \in \Delta$ } is a preopen cover of X. Since X is strongly compact, there exists a finite subset Δ_0 of Δ such that $X = \bigcup \{V_{\alpha}: \alpha \in \Delta_0\}$. Hence X is Ps-compact.

The converse of Lemma 3.16 is not true as shown by the next example.

Example 3.17: Let $X = \Re$ with the topology $\tau = \{\phi, X, \{0\}\}$. Then (X,τ) is not strongly compact [4, Example 2.6 (iii)]. Since the space X is hyperconnected, then by Lemma 2.1 (4), PsO(X) = $\{\phi, X\}$. Then (X,τ) is Ps-compact.

Theorem 3.18: Every semi-T₁ and Ps-compact space is strongly compact.

Proof: Suppose that X is semi-T₁ and Ps-compact space. Let $\{V_{\alpha}: \alpha \in \Delta\}$ be any preopen cover of X. Then for every $x \in X$, there exists $\alpha(x) \in \Delta$ such that $x \in V_{\alpha(x)}$. Since X is semi-T₁, by Lemma 2.1 (1), the family $\{V_{\alpha}: \alpha \in \Delta\}$ is a Ps-open cover of X. Since X is Ps-compact, there exists a finite subset Δ_0 of Δ in X such that $X = \bigcup \{V_{\alpha}: \alpha \in \Delta_0\}$. Hence X is strongly compact.

Corollary 3.19: Let a space X be semi-T₁. Then X is Ps-compact if and only if X is strongly compact.

Proof: Follows from Lemma 3.16 and Theorem 3.18.

Lemma 3.20: If a topological space (X,τ) is Ps-compact, then it is nearly compact.

Proof: Let { V_{α} : $\alpha \in \Delta$ } be any regular open cover of X. Then { V_{α} : $\alpha \in \Delta$ } is a Ps-open cover of X. Since X is Ps-compact, there exists a finite subset Δ_0 of Δ such that $X = \bigcup \{V_{\alpha}: \alpha \in \Delta_0\}$. Hence X is nearly compact.

The following example shows that the converse of the above lemma is not true.

Example 3.21: The unit interval [0,1] with the usual topology is compact [4, Example 2.6 (ii)] and hence it is nearly compact, but not Ps-compact.

Corollary 3.22: If a topological space (X, τ) is Ps-compact, then it is quasi-H-closed.

Proof: Follows from Lemma 3.20 and the fact that each nearly compact space is quasi-H-closed.

In general, Ps-compact spaces and compact spaces are not comparable as shown by the following two examples:

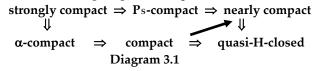
IJSER © 2016 http://www.ijser.org **Example 3.23:** Let X = (0, 1) with the topology τ consisting of ϕ , X and all subsets of X of the form (0,1-1/n), where n = 2, 3, Then (X, τ) is not compact (see [22]). Since the space X is hyperconnected, then by Lemma 2.1 (4), the family of Ps-open sets are only ϕ and X. Therefore, X is Ps-compact.

Example 3.24: Any closed interval [a,b], where a, $b \in \Re$ with the relative usual topology is compact, but it is not Ps-compact.

Proposition 3.25: Let a topological space (X,τ) is locally indiscrete. Then X is compact if and only if X is Ps-compact. **Proof:** Follows from Lemma 2.1 (2).

Lemma 3.26: Let a topological space (X,τ) be s-regular. If X is Ps-compact, then it is compact. **Proof:** Follows from Lemma 2.1 (3).

From Lemma 3.16, Lemma 3.20 and Corollary 3.22, we obtain the following diagram of implications.



Theorem 3.27: For any topological space (X,τ) . The following statements are equivalent:

1) (X,τ) is Ps-compact,

2) Every maximal filter base \mathfrak{I} in X Ps-converges to some point $x \in X$,

3) Every filter base \Im in X Ps-accumulates to some point $x \in X$, **4)** For every family { F_{α} : $\alpha \in \Delta$ } of Ps-closed subsets of X such that \cap { F_{α} : $\alpha \in \Delta$ } = φ , there exists a finite subset Δ_0 of Δ such that \cap { F_{α} : $\alpha \in \Delta_0$ } = φ .

Proof: (1) \Rightarrow (2): Suppose that X is Ps-compact space and let \Im = {F $_{\alpha}$: $\alpha \in \Delta$ } be a maximal filter base. Suppose that \Im does not Ps-converges to any point of X. Since \Im is maximal, by Proposition 3.4, \Im does not Ps-accumulates to any point of X. This implies that for every $x \in X$, there exists a Ps-open set Vx and an F $_{\alpha(x)} \in \Im$ such that $F_{\alpha(x)} \cap V_x = \varphi$. The family {Vx: $x \in X$ } is a Ps-open cover of X and by hypothesis, there exists a finite number of points $x_1, x_2, ..., x_n$ of X such that $X = \bigcup$ {V(xi): i = 1, 2, ..., n}. Since \Im is a filter base on X, there exists an F $_0 \in \Im$ such that F $_0 \subseteq \bigcap$ {F $_{\alpha(xi)}$: i = 1, 2, ..., n}. Hence F $_0 \cap V_{(xi)} = \varphi$ for i = 1, 2, ..., n. Which implies that F $_0 = \varphi$. Contracting the fact that F $_0 \neq \varphi$.

(2) \Rightarrow (3): Let \Im be any filter base on X. Then, there exists a maximal filter base \Im_0 such that $\Im \subseteq \Im_0$. By hypothesis, \Im_0 Ps-converges to some point $x \in X$. For every $F \in \Im$ and every Ps-open set V containing x, there exists an $F_0 \in \Im_0$ such that $F_0 \subseteq V$, hence $\varphi \neq F_0 \cap F \subseteq V \cap F$. This shows that \Im Ps-accumulates at x.

such that \cap {F_a: $\alpha \in \Delta$ } = ϕ . Suppose that every finite subfamily \cap {F_{ai}: i = 1, 2, ..., n} $\neq \phi$. Therefore $\Im = \{\cap F_{ai}: i = 1, 2, ..., n, F_{ai} \in \{F_{\alpha}: \alpha \in \Delta\}\}$ form a filter base on X. By hypothesis, \Im Psaccumulates to some point $x \in X$. This implies that for every Ps-open set V containing x, $F_{\alpha} \cap V \neq \phi$ for every $F_{\alpha} \in \Im$ and every $\alpha \in \Delta$. Since $x \notin \cap F_{\alpha}$ there exists $\alpha_0 \in \Delta$ such that $x \notin$ $F_{\alpha 0}$. Hence, x is contained in the Ps-open set X\F_{a0} and F_{a0} \cap X\F_{\alpha 0} = ϕ . Contracting the fact that \Im Ps-accumulates to x. (4) \Rightarrow (1): Let {V_{\alpha}: $\alpha \in \Delta$ } be a Ps-open cover of X. Then {X\V_{\alpha}:

812

 $\alpha \in \Delta$ } is a family of Ps-closed subsets of X such that \cap {X\V_{α}: $\alpha \in \Delta$ } = ϕ . By hypothesis, there exists a finite subset Δ_0 of Δ such that \cap {X\V_{α}: $\alpha \in \Delta_0$ } = ϕ . Hence X = \cup {V_{α}: $\alpha \in \Delta_0$ }. This shows that X is Ps-compact.

4 Ps-SETS AND Ps-COMPACT SUBSPACES

In this section, we introduce a new class of topological space called Ps-set and Ps-compact subspace.

Definition 4.1: A subset A of a topological space (X,τ) is said to be Ps-set (resp., Ps-compact subspace) if for every cover $\{V_{\alpha}: \alpha \in \Delta\}$ of A by Ps-open subsets of (X,τ) (resp., by Ps-open subsets of A), there exists a finite subset Δ_0 of Δ such that $A \subseteq \bigcup \{V_{\alpha}: \alpha \in \Delta_0\}$ (resp., $A = \bigcup \{V_{\alpha}: \alpha \in \Delta_0\}$).

Lemma 4.2: A subset A of a space X is Ps-set (resp., Ps-compact subspace) if and only if for every cover of A by Ps-open sets of X (resp., by Ps-open sets of A) has a finite subcover.

Proof: The proof follows directly from Definition 4.1.

Now we will give several equivalent conditions to Ps-sets (resp., Ps-compact subspaces) of topological spaces and also we give some other conditions each of which makes a given topological space a Ps-compact space.

Theorem 4.3: Let A be a subset of a topological space (X,τ) . If every cover of A by semi-closed subsets of X (resp., by semi-closed subsets of A) has a finite subcover, then A is Ps-set (resp., Ps-compact subspace).

Proof: Let { V_{α} : $\alpha \in \Delta$ } be a cover of A by Ps-open subset of X (resp., by Ps-open subsets of A), then for each $x \in X$, there exists $\alpha \in \Delta_0$, $x \in V_{\alpha(x)}$, there exists a semi-closed set $F_{\alpha(x)}$ such that $x \in F_{\alpha(x)} \subseteq V_{\alpha(x)}$. So the family { $F_{\alpha(x)}$: $x \in X$ } is a cover of A by semi-closed subsets of X (resp., by semi-closed subsets of A), then by hypothesis, this family has a finite subcover such that $A \subseteq \cup$ { $F_{\alpha(xi)}$: i = 1, 2, ..., n} $\subseteq \cup$ { $V_{\alpha(xi)}$: i = 1, 2, ..., n} (resp., A = \cup { $F_{\alpha(xi)}$: i = 1, 2, ..., n} (resp., $A \subseteq \cup$ { $V_{\alpha(xi)}$: i = 1, 2, ..., n} (resp., $A \subseteq \cup$ { $V_{\alpha(xi)}$: i = 1, 2, ..., n}. Therefore, $A \subseteq \cup$ { $V_{\alpha(xi)}$: i = 1, 2, ..., n} (resp., $A = \cup$ { $V_{\alpha(xi)}$: i = 1, 2, ..., n}. Hence A is Ps-set (resp., Ps-compact subspace).

Theorem 4.4: For any topological space (X,τ) . The following statements are equivalent:

1) A is Ps-set (resp., Ps-compact subspace),

2) Every maximal filter base \Im on X which meets A Ps-converges to some point of A,

3) Every filter base \Im on X which meets A Ps-accumulates to some point $x \in X$,

IJSER © 2016 http://www.ijser.org

(3) \Rightarrow (4): Let {F_{α}: $\alpha \in \Delta$ } be a family of Ps-closed subsets of X

4) For every family { F_{α} : $\alpha \in \Delta$ } of Ps-closed subsets of (X, τ) such that [\cap { F_{α} : $\alpha \in \Delta$ }] $\cap A = \phi$, there exists a finite subset Δ_0 of Δ such that [\cap { F_{α} : $\alpha \in \Delta_0$ }] $\cap A = \phi$. **Proof:** Similar to Theorem 3.27.

Theorem 4.5: A space X is Ps-compact if and only if every proper Ps-closed set of X is Ps-set.

Proof: Necessity: Let F be any proper Ps-closed set of X. Let $\{V_{\alpha}: \alpha \in \Delta\}$ be a cover of F and $V_{\alpha} \in PsO(X)$ for every $\alpha \in \Delta$. Since F is Ps-closed set, then X\F is Ps-open set. So the family $\{V_{\alpha}: \alpha \in \Delta\} \cup X \setminus F$ is a Ps-open cover of X. Since X is Ps-compact, there exists a finite subset Δ_0 of Δ such that $X = \bigcup \{V_{\alpha}: \alpha \in \Delta_0\} \cup (X \setminus F)$. Therefore, we obtain $F \subseteq \bigcup \{V_{\alpha}: \alpha \in \Delta_0\}$. Hence F is Ps-set.

Sufficiency: Let { V_{α} : $\alpha \in \Delta$ } be a cover of X and $V_{\alpha} \in PsO(X)$ for every $\alpha \in \Delta$. Suppose that $X \neq V_{\alpha 0} \neq \phi$ for every $\alpha 0 \in \Delta$. Then X\V_{\alpha\0} is a proper Ps-closed subset of X. Therefore, by hypothesis, there exists a finite subset Δ_0 of Δ such that X\V_{\alpha\0} $\subseteq \cup$ {V_{\alpha}: $\alpha \in \Delta_0$ }. Therefore, we obtain $X = \cup$ {V_{\alpha}: $\alpha \in \Delta_0 \cup$ {\alpha\0}}. Which shows that X is Ps-compact.

Theorem 4.6: If a space X is Ps-compact and A is both regular open and Ps-closed subset of X, then A is Ps-compact subspace.

Proof: Let { A_{α} : $\alpha \in \Delta$ } be any cover of A by Ps-open set of A. Since $A \in RO(X)$, by Lemma 2.2 (1), $A_{\alpha} \in PsO(X)$ for each $\alpha \in \Delta$. Since A is a Ps-closed subset of X, then $X \setminus A \in PsO(X)$ and { A_{α} : $\alpha \in \Delta$ } $\cup X \setminus A = X$ and { A_{α} : $\alpha \in \Delta$ } $\cup X \setminus A$ forms a Ps-open cover of X. Since X is Ps-compact, there exists a finite subset Δ_0 of Δ such that $X = \cup$ { A_{α} : $\alpha \in \Delta_0$ } $\cup X \setminus A$, hence $A = \cup$ { A_{α} : $\alpha \in \Delta_0$ }. Therefore, A is Ps-compact subspace.

Theorem 4.7: If there exists either a proper regular semi-open or a proper preregular subset A of a topological space (X,τ) such that A and X\A are Ps-compact subspace, then X is also Ps-compact.

Proof: Let { V_{α} : $\alpha \in \Delta$ } be any Ps-cover cover of X. Since A is either regular semi-open or preregular subset of X, then for every $\alpha \in \Delta$, by Lemma 2.2 (3), we have $A \cap V_{\alpha} \in P_{s}O(A)$. Therefore, { $A \cap V_{\alpha}$: $\alpha \in \Delta$ } is a Ps-open cover of A. Since A is Ps-compact subspace, there exists a finite subset Δ_{0} of Δ such that $A = \bigcup \{A \cap V_{\alpha}: \alpha \in \Delta_{0}\}$. Therefore, we have $A \subseteq \bigcup \{V_{\alpha}: \alpha \in \Delta_{0}\}$. Since A is either regular semi-open or preregular subset of X, then X\A is also either regular semi-open or preregular. By the same way we can find a finite subset Δ_{1} of Δ such that X\A $\subseteq \bigcup \{V_{\alpha}: \alpha \in \Delta_{1}\}$. Hence $X = \bigcup \{V_{\alpha}: \alpha \in \Delta_{0} \cup \Delta_{1}\}$. This shows that X is Ps-compact.

Theorem 4.8: If there exists a proper clopen subset A of a topological space (X,τ) such that A and X\A are Ps-sets, then X is also Ps-compact.

Proof: Let { V_{α} : $\alpha \in \Delta$ } be any Ps-cover cover of X. Since A is clopen subset of X, then A is regular open subset of X. There-

fore, for every $\alpha \in \Delta$, by Lemma 2.2 (2), we have $A \cap V_{\alpha} \in P_sO(X)$. Therefore, $\{A \cap V_{\alpha} : \alpha \in \Delta\}$ is a cover of A by Ps-open sets of X. Since A is Ps-set, there exists a finite subset Δ_0 of Δ such that $A \subseteq \cup \{V_{\alpha} : \alpha \in \Delta_0\} \cap A \subseteq \cup \{V_{\alpha} : \alpha \in \Delta_0\}$. Since A is clopen subset of X, then X\A is also clopen. By the same way we can find a finite subset Δ_1 of Δ such that $X \setminus A \subseteq \cup \{V_{\alpha} : \alpha \in \Delta_1\}$. Hence $X = \cup \{V_{\alpha} : \alpha \in \Delta_0 \cup \Delta_1\}$. This shows that X is Ps-compact.

Theorem 4.9: If a regular open set G of a space X is Ps-set, then G is Ps-compact subspace.

Proof: Suppose that $G \in RO(X)$ and G is Ps-set. Let $\{V_{\alpha} : \alpha \in \Delta\}$ be a cover of G and $V_{\alpha} \in P_{s}O(G)$ for every $\alpha \in \Delta$. Since $G \in RO(X)$, then by Lemma 2.2 (1), we have $V_{\alpha} \in P_{s}O(X)$ for every $\alpha \in \Delta$. Since G is Ps-set, there exists a finite subset Δ_{0} of Δ such that $G \subseteq \bigcup \{V_{\alpha} : \alpha \in \Delta_{0}\}$, which implies that G is Ps-compact subspace.

Theorem 4.10: If either $G \in RSO(X)$ or $G \in \tau$ or G is a preregular or an open set G of a space X is Ps-compact subspace, then G is Ps-set.

Proof: Suppose that either $G \in RSO(X)$ or $G \in \tau$ or G is a preregular, and $\{V_{\alpha}: \alpha \in \Delta\}$ be a cover of G and $V_{\alpha} \in PsO(X)$ for every $\alpha \in \Delta$. Since either $G \in RSO(X)$ or $G \in \tau$ or G is a preregular, then for every $\alpha \in \Delta$, by Lemma 2.2 (3), we have $G \cap V_{\alpha} \in PsO(G)$. Therefore, the family $\{G \cap V_{\alpha}: \alpha \in \Delta\}$ is a Ps-open cover of G. Since G is Ps-compact subspace, there exists a finite subset Δ_0 of Δ such that $G = \bigcup \{G \cap V_{\alpha}: \alpha \in \Delta_0\}$. Therefore, $G \subseteq \bigcup \{V_{\alpha}: \alpha \in \Delta_0\}$, which implies that G is Ps-set.

Corollary 4.11: A regular open set G of a space X is Ps-set if and only if G is Ps-compact subspace.

Proof: This is an immediate consequence of Theorem 4.9 and Theorem 4.10.

Theorem 4.12: Let A and B be subsets of a space X. If A is Psclosed set and B is Ps-set, then $A \cap B$ is Ps-set.

Proof: Let { V_{α} : $\alpha \in \Delta$ } be any cover of $A \cap B$ by Ps-open subsets of X. Since A is Ps-closed set, then X\A is Ps-open. So $B \subseteq \bigcup \{V_{\alpha}: \alpha \in \Delta\} \cup X \setminus A$ and the family { $V_{\alpha}: \alpha \in \Delta\} \cup X \setminus A$ is a Ps-open cover of B. Since B is Ps-set, then there exists a finite subset Δ_0 of Δ such that $B \subseteq \bigcup \{V_{\alpha}: \alpha \in \Delta_0\} \cup (X \setminus A)$. Therefore, we obtain $A \cap B \subseteq \bigcup \{V_{\alpha}: \alpha \in \Delta_0\}$. Hence $A \cap B$ is Ps-set.

Theorem 4.13: Let Y be any regular open subspace of a space X and A be any subset of Y. Then A is Ps-set of X if and only if A is Ps-set of Y.

Proof: Necessity: Suppose that A is Ps-set of X and $Y \in RO(X)$. Let {V $_{\alpha}$: $\alpha \in \Delta$ } be a cover of A and V $_{\alpha} \in P_{s}O(Y)$ for every $\alpha \in \Delta$. Since $Y \in RO(X)$. Then by Lemma 2.2 (4), there exists a Psopen set U $_{\alpha}$ of X such that V $_{\alpha} = U_{\alpha} \cap Y$ for every $\alpha \in \Delta$. So A $\subseteq \cup$ {V $_{\alpha}$: $\alpha \in \Delta$ } = \cup {U $_{\alpha} \cap Y$: $\alpha \in \Delta$ } $\subseteq \cup$ {U $_{\alpha}$: $\alpha \in \Delta$ }. Then the family {U $_{\alpha}$: $\alpha \in \Delta$ } is a cover of A and U $_{\alpha} \in P_{s}O(X)$. Since A is Ps-set of X, there exists a finite subset Δ_{0} of Δ such that A \subseteq \cup {U_{α}: $\alpha \in \Delta_0$ }. Since A \subseteq Y. Hence A $\subseteq \cup$ {U_{$\alpha} <math>\cap$ Y: $\alpha \in \Delta_0$ } = \cup {V_{α}: $\alpha \in \Delta_0$ }. Therefore, A is Ps-set of Y.</sub>

Sufficiency: Suppose that A is Ps-set of Y and Y \in RO(X). Let {U_a: $\alpha \in \Delta$ } be a cover of A and U_a \in PsO(X) for every $\alpha \in \Delta$. Since A \subseteq Y. Then A $\subseteq \cup$ {U_a: $\alpha \in \Delta$ } \cap Y = \cup {U_a \cap Y: $\alpha \in \Delta$ }. Since Y \in RO(X). Then by Lemma 2.2 (4), there exists a Psopen set V_a of Y such that V_a = U_a \cap Y for every $\alpha \in \Delta$. Then the family {V_a: $\alpha \in \Delta$ } is a cover of A and V_a \in PsO(Y). Since A is Ps-set of Y, there exists a finite subset Δ_0 of Δ such that A \subseteq \cup {V_a: $\alpha \in \Delta_0$ } = \cup {U_a \cap Y: $\alpha \in \Delta_0$ } $\subseteq \cup$ {U_a: $\alpha \in \Delta_0$ }. Therefore, A is Ps-set of X.

5 RESULTS ON IMAGES OF Ps-COMPACTNESS

Theorem 5.1: If a function $f : X \rightarrow Y$ is Ps-continuous (resp., almost Ps-continuous) and A is Ps-set, then f (A) is compact (resp., N-closed) relative to Y.

Proof: Let { G_{α} : $\alpha \in \Delta$ } be any cover of f (A) by open sets of Y. For each $x \in A$, there exists an $\alpha(x) \in \Delta$ such that $f(x) \in G_{\alpha(x)}$. Since f is Ps-continuous (resp., almost Ps-continuous), there exists a Ps-open set U_x of X containing x such that f (U_x) \subseteq $G_{\alpha(x)}$ (resp., f (U_x) \subseteq Int(Cl($G_{\alpha(x)}$))). Then the family {U_{\alpha}: $x \in A$ } is a Ps-open cover of A. For some finite subset A₀ of A, we have A $\subseteq \cup$ {U_x: $x \in A_0$ }. Therefore, f (A) $\subseteq \cup$ {G_{\alpha(x)}: $x \in A_0$ } (resp., f (A) $\subseteq \cup$ {Int(Cl($G_{\alpha(x)}$)): $x \in A_0$ }). This shows that f (A) is compact (resp., N-closed) relative to Y.

Corollary 5.2: If $f : X \rightarrow Y$ is Ps-continuous (resp., almost Ps-continuous) surjection function and X is Ps-compact, then Y is compact (resp., nearly compact).

Proposition 5.3: If a function $f: X \rightarrow Y$ is Ps-continuous (resp., almost Ps-continuous), A is Ps-set and F is Ps-closed subset of X, then $f(A \cap F)$ is compact (resp., N-closed) relative to Y. **Proof:** Follows from Theorem 5.1 and Theorem 4.12.

Proposition 5.4: If $f : X \rightarrow Y$ is a precontinuous (resp., almost precontinuous) surjection function and X is semi-T₁ and P_s-compact space, then Y is compact (resp., nearly compact). **Proof:** Follows from Theorem 5.1 and Corollary 3.19.

Proposition 5.5: If $f : X \rightarrow Y$ is a Ps-continuous (resp., almost Ps-continuous) surjection function and X is locally indiscrete and compact space, then Y is compact (resp., nearly compact). **Proof:** Follows from Theorem 5.1 and Proposition 3.25.

Proposition 5.6: If $f: X \rightarrow Y$ is a continuous (resp., almost continuous) surjection function and X is locally indiscrete and Ps-compact space, then Y is compact (resp., nearly compact). **Proof:** Follows from Theorem 5.1 and Proposition 3.25.

Proposition 5.7: If $f: X \rightarrow Y$ is a continuous (resp., almost continuous) surjection function and X is s-regular and Ps-compact space, then Y is compact (resp., nearly compact). **Proof:** Follows from Theorem 5.1 and Lemma 3.26. **Proposition 5.8:** If $f: X \rightarrow Y$ is a θ s-continuous surjection function and X is extremally disconnected and Ps-compact space, then Y is compact.

Proof: Follows from Theorem 5.1 and Theorem 2.4.

Theorem 5.9: If $f: X \rightarrow Y$ is a continuous and open function. If A is Ps-set, then f(A) is Ps-set.

Proof: Let {V $_{\alpha}$: $\alpha \in \Delta$ } be any cover of f (A) by Ps-open sets of Y. Since f is continuous and open function. By Theorem 2.3, { $f^{-1}(V_{\alpha})$: $\alpha \in \Delta$ } is a cover of A by Ps-open sets of X. Since A is Ps-set, there exists a finite subset Δ_0 of Δ such that $A \subseteq \cup \{f^{-1}(V_{\alpha})$: $\alpha \in \Delta_0$ }. Thus, we have $f(A) \subseteq \cup \{V_{\alpha}: \alpha \in \Delta_0\}$. This shows that f (A) is Ps-set.

Corollary 5.10: If X is a Ps-compact space and $f : X \rightarrow Y$ is a continuous and open surjection function, then Y is Ps-compact.

6 CONCLUSION

In this paper, we introduce Ps-compact spaces via Ps-open sets which are lies strictly between the classes of strongly compact and nearly compact spaces, but it is not comparable with compact space.

REFERENCES

- N. K. Ahmed, On some types of separation axioms, M.Sc. Thesis, College of Science, Salahaddin Univ., 1990.
- [2] D. E. Cameron, Properties of S-closed spaces, Proc. Amer. Math. Soc., 72 (3) (1978), 581-586.
- [3] G. Di Maio, Survey on preopen sets, *The Proceedings of the Yatsushiro Topological Conference*, (1998), 1-18.
- [4] G. Di Maio, M. Ganster and T. Noiri, On p-closed spaces, Internat. J. Math. and Math. Sci., 24 (3) (2000), 203-212.
- [5] G. Di Maio and T. Noiri, On s-closed spaces, Indian J. Pure Appl. Math., 18 (3) (1987), 226-233.
- [6] S. Jafari and T. Noiri, Functions with preclosed graphs, Univ. Bacau. Stud. Cerc. St. Ser. Mat., 8 (1998), 53-56.
- [7] J. E. Joseph and M. H. Kwack, On S-closed spaces, Proc. Amer. Math. Soc., 80 (2) (1980), 341-348.
- [8] A. B. Khalaf and A. M. Abdul-Jabbar, Almost θs-continuity and weak θs-continuity in topological spaces, J. Dohuk Univ., 4 (2) (2001), 171-177.
- [9] A. B. Khalaf and F. H. Easif, θs-continuous functions, J. Dohuk Univ., (special issue) 2 (1) (1999), 1-7.
- [10] A. B. Khalaf and B. A. Asaad, Almost Ps-continuous functions, Tamkang J. Math., 43 (1) (2012), 33-50.
- [11] A. B. Khalaf and B. A. Asaad, Ps-open sets and Ps-continuity in topological spaces, J. Duhok Univ., 12 (2) 2009, 183-192.
- [12] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1) (1963), 36-41.
- [13] S. N. Maheshwari and R. Prasad, Some new separation axioms, Ann. Soc. Sci. Bruxelles, Ser. I., 89 (1975), 395-402.
- [14] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and week precontinuous mappings, *Proc. Math. Phys. Soc. Egypt*, 53 (1982), 47-53.

- [15] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, Strongly compact spaces, *Delta J. Sci.*, 8 (1) (1984), 30-46.
- [16] A. A. Nasef and T. Noiri, Some weak forms of almost continuity, Acta Math. Hungar., 74 (3) (1997), 211-219.
- [17] G. B. Navalagi, Pre-neighbourhoods, *The Mathematics Education*, 32 (4) (1998), 201-206.
- [18] O. Njastad, On some classes of nearly open sets, *Pacific J. Math.*, 15 (3) (1965), 961-970.
- [19] T. Noiri, A generalization of perfect functions, J. London Math. Soc., 2 (17) (1978), 540-544.
- [20] J. Porter and J. Thomas, On H-closed and minimal Hausdorff spaces, Trans. Amer. Math. Soc., 138 (1969), 159-170.
- [21] M. K. Singal and A. Mathur, On nearly compact spaces, Boll. Un. Mat. Ital., 4 (2) (1969), 702-710.
- [22] L. A. Steen and J. A. Seebach, *Counterexamples in Topology*, Springer Verlag New York Heidelberg Berlin, 1978.
- [23] N. V. Velicko, H-closed topological spaces, Amer. Math. Soc. Transl., 78 (2) (1968), 103-118.

IJSER