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1 INTRODUCTION                                                                     

ashhour et al. [14] and Levine [12] defined preopen and 
semi-open sets, respectively, which are both weaker than 
open sets in topological spaces. In 2009, Khalaf and Asaad 

[11] introduced PS-open sets, which are stronger than preopen 
sets, in order to investigate the characterization of PS-continuous 
functions. In [10] they have introduced the notion of almost 
PS-continuous functions. Singal and Mathur [21] defined the 
concept of nearly compact spaces. Mashhour et al. [15] intro-
duced the concept of strongly compact spaces. The purpose of 
the present paper is to introduce a new class of spaces called PS-
compact. This class of spaces lies strictly between the classes of 
strongly compact space and nearly compact space, but it is not com-
parable with compact space. 

2 PRELIMINARIES 
Throughout this paper, (X,τ) and (Y,σ) (or simply X and Y) 
denote topological spaces on which no separation axioms are 
assumed unless explicitly stated. If A is any subset of a space 
X, then Cl(A) and Int(A) denote the closure and the interior of 
A, respectively. A subset A of X is called preopen [14] (resp., 
semi-open [12], α-open [18] and regular open [22]) if A ⊆ 
Int(Cl(A)) (resp., A ⊆ Cl(Int(A)), A ⊆ Int(Cl(Int(A))) and A = 
Int(Cl(A))). The complement of a preopen (resp., semi-open) 
set is called preclosed (resp., semi-closed). A subset A of X is 
said to be preregular [17] if A is both preopen and preclosed. A 
preopen subset A of X is called PS-open [11] if for each x ∈ A, 
there exists a semi-closed set F such that x ∈ F ⊆ A. The com-
plement of a PS-open set is called PS-closed. The intersection 
(resp., union) of an arbitrary collection of PS-closed (resp., PS-
open) sets in (X,τ) is PS-closed (resp., PS-open). A subset A of a 
space X is called θ-semi-open [7] if for each x ∈ A, there exists 
a semi-open set G such that x ∈ G ⊆ Cl(G) ⊆ A. 
 

 

The PS-closure (resp., preclosure and semi-closure) of A, de-
noted by PSCl(A) (resp., pCl(A) and sCl(A)), is defined as the 
intersection of all PS-closed (resp., preclosed and semi-closed) 
sets containing A. The semi-interior of A, denoted by sInt(A), 
is defined as the union of all semi-open sets contained in A. A 
subset A of X is called regular semi-open [2] if A = sInt(sCl(A)). 
The complement of a regular semi-open) set is called prec-
losed (resp., semi-closed and regular semi-open). A point x ∈ 
X is called a δ-cluster [23] of A if A ∩ U ≠ φ for each regular 
open set U containing x. The set of all δ-cluster points of A is 
called the δ-closure of A and is denoted by Clδ(A). A subset A 
is called δ-closed if Clδ(A) = A. The complement of a δ-closed 
set is called δ-open. We denote the collection of all PS-open 
(resp., preopen, regular open and regular semi-open) sets of X 
by PSO(X) (resp., PO(X), RO(X) and RSO(X)). 

Recall that a space X is said to be extremally disconnected 
[5] if Cl(U) ∈ τ for every U ∈ τ. A space X is called locally indi-
screte [3] if every open subset of X is closed. A space X is said 
to be hyperconnected [3] if every nonempty open subset of X 
is dense in X. A space X is s-regular [1] if and only if for each x 
∈ X and each open set G containing x, there exists a semi-open 
set H such that x ∈ H ⊆ sCl(H) ⊆ G. A space X is called semi-
T1 [13] if and only if to each pair of distinct points x, y of X, 
there exists a pair of semi-open sets, one containing x but not y 
and the other containing y but not x. A function f : X → Y is 
said to be PS-continuous [11] (resp., precontinuous [14] and θs-
continuous [9]) if for each x ∈ X and each open set V of Y con-
taining f (x), there exists a PS-open (resp., preopen and θ-semi-
open) set U of X containing x such that f (U) ⊆ V. A function f : 
X → Y is said to be almost PS-continuous [10] (resp., almost 
precontinuous [16] and almost θs-continuous [8]) if for each x 
∈ X and each open set V of Y containing f (x), there exists a PS-
open (resp., preopen and θ-semi-open) set U of X containing x 
such that f (U) ⊆ Int(Cl(V))  

Recall that a filter base ℑ is said to be p-converges [6] 
(resp., pre-θ-converges [4] and δ-converges [23]) to a point x ∈ 
X if for every preopen (resp., preopen and open) set V contain-
ing x, there exists an F ∈ ℑ such that F ⊆ V (resp., F ⊆ pCl(V) 
and F ⊆ Int(Cl(V))). A filter base ℑ is said to be p-accumulates 
[6] (resp., pre-θ-accumulates [4] and δ-accumulates [23]) to a 
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point x ∈ X if F ∩ V ≠ φ (resp., F ∩ pCl(V) ≠ φ and F ∩ 
Int(Cl(V)) ≠ φ), for every preopen (resp., preopen and open) 
set V containing x and every F ∈ ℑ. A topological space (X,τ) is 
said to be strongly compact [15] (resp., α-compact [4]) if every 
preopen (resp., α-open) cover of X has a finite subcover. A 
subset A of a space X is said to be N-closed [19] (resp., quasi-
H-closed [20]) relative to X if for every cover {Vα : α ∈ Δ} of A 
by open sets of X, there exists a finite subset Δ0 of Δ such that 
A ⊆ ∪{Int(Cl(Vα)) : α ∈ Δ0} (resp., A ⊆ ∪{Cl(Vα) : α ∈ Δ0}). A 
space X is said to be nearly compact [21] if X is N-closed rela-
tive to X. 
Lemma 2.1 [11]: The following statements are true: 

1) If a space X is semi-T 1, then PSO(X) = PO(X). 
2) If a space X is locally indiscrete, then PSO(X) = τ. 
3) If a space X is s-regular, then τ ⊆ PSO(X). 
4) A space X is hyperconnected if and only if PSO(X) = 

{φ, X}. 
Lemma 2.2 [11]: Let (Y,τY) be a subspace of a space (X,τ) and A 
⊆ X. Then the following properties are hold: 

1) If A ∈ PSO(Y) and Y ∈ RO(X), then A ∈ PSO(X). 
2) If A ∈ PSO(X) and Y ∈ RO(X), then A ∩ Y ∈ PSO(X). 
3) If either Y ∈ RSO(X) or Y ∈ τ or Y is a preregular, and 

A ∈ PSO(X), then A ∩ Y ∈ PSO(Y). 
4) If Y ∈ RO(X), then PSO(Y) = PSO(X) ∩ Y. 

Theorem 2.3 [11]: If f : X → Y is a continuous and open func-
tion and V is a PS-open set of Y, then f−1(V) is a PS-open set of 
X. 
Theorem 2.4 [11]: Let f : X → Y be a function and X be an ex-
tremally disconnected space. If f is θs-continuous (resp., al-
most θs-continuous), then f is PS-continuous (resp., almost PS-
continuous). 

3 PS-COMPACT SPACES 

In this section, we introduce a new class of topological spaces 
called PS-compact. This class of spaces lies strictly between the 
classes of strongly compact space and nearly compact space, 
but it is not comparable with compact space. 
Definition 3.1: A filter base ℑ in a topological space (X,τ) PS-
converges (resp., PS-θ-converges) to a point x ∈ X if for every 
PS-open set V containing x, there exists an F ∈ ℑ such that F ⊆ 
V (resp., F ⊆ PSCl(V)). 
Definition 3.2: A filter base ℑ in a topological space (X,τ) PS-
accumulates (resp., PS-θ-accumulates) to a point x ∈ X if F ∩ V 
≠ φ (resp., F ∩ PSCl(V) ≠ φ), for every PS-open set V containing 
x and every F ∈ ℑ. 
 

It is clear from the above definitions that PS-converges 
(resp., PS-accumulates) of filter bases in topological spaces 
implies PS-θ-converges (resp., PS-θ-accumulates), but the con-
verses are not true in general as shown in the following exam-
ple. 
Example 3.3: Let X = {a, b, c, d}, τ = {φ, X, {a}, {b}, {a, b}} and ℑ = 

{{a, c}, {a, b, c}, {a, c, d}, X}. Then PSO(X) = {φ, X, {a}, {b}, {a, b}, 
{a, b, c}, {a, b, d}}. Thus, ℑ PS-θ-converges to a, but ℑ does not 
PS-converges to a, because the set {a} is PS-open containing a, 
there is no an F ∈ ℑ such that F ⊆ {a}. Also ℑ PS-θ-accumulates 
to b, but ℑ does not PS-accumulates to b, because the set {b} is 
PS-open containing b, there exists an F ∈ ℑ such that F ∩ {b} = 
φ. 
 

The following proposition is an easy consequence of the 
above definitions. 
Proposition 3.4: If ℑ is a maximal filter base in a topological 
space (X,τ), then ℑ PS-converges (resp., PS-θ-converges) to a 
point x ∈ X if and only if ℑ PS-accumulates (resp., PS-θ-
accumulates) to a point x. 
Lemma 3.5: Let ℑ be a filter base in a topological space (X,τ). If 
ℑ p-converges (resp., pre-θ-converges) to a point x ∈ X, then ℑ 
PS-converges (resp., PS-θ-converges) to a point x. 
Proof: Suppose that ℑ p-converges (resp., pre-θ-converges) to 
a point x ∈ X. Let V be any PS-open set containing x, then V is 
preopen set containing x. Since ℑ p-converges (resp., pre-θ-
converges) to a point x ∈ X, there exists an F ∈ ℑ such that F ⊆ 
V (resp., F ⊆ pCl(V) ⊆ PSCl(V)). This shows that ℑ PS-
converges (resp., PS-θ-converges) to a point x. 
 

The following example shows that the converse of Lemma 
3.5 is not true in general. 
Example 3.6: Let X = {a, b, c, d}, τ = {φ, X, {d}, {b, c}, {b, c, d}, {a, 
b, c}} and ℑ = {{a, c}, {a, c, d}, {a, b, c}, X}. Then PSO(X) = {φ, X, 
{d}, {a, b, c}}. Thus, ℑ PS-converges (resp., PS-θ-converges) to a, 
but ℑ does not pre-θ-converges to a and hence does not p-
converges to a, because the set {a, b} is preopen containing a, 
there is no an F ∈ ℑ such that F ⊆ {a, b} (resp., F ⊆ pCl({a, b}) = 
{a, b}). 
 
Lemma 3.7: Let ℑ be a filter base in a topological space (X,τ). If 
ℑ p-accumulates (resp., pre-θ-accumulates) to a point x ∈ X, 
then ℑ PS-accumulates (resp., PS-θ-accumulates) at a point x. 
Proof: The proof is similar to Lemma 3.5. 
 

The converse of Lemma 3.7 is not true in general as shown 
by the following example. 
Example 3.8: Consider the space (X,τ) given in Example 3.6. 
Let ℑ = {{a, c}, {a, c, d}, {a, b, c}, X}. Then ℑ PS-accumulates 
(resp., PS-θ-accumulates) to b, but ℑ does not pre-θ-
accumulates to b and hence does not p-accumulates to b, be-
cause the set {b, d} is preopen containing b, there exists an F ∈ 
ℑ such that F ∩ pCl({b, d}) = φ and hence F ∩ {b, d} = φ. 
 
Lemma 3.9: Let ℑ be a filter base in a topological space (X,τ). If 
ℑ PS-converges to a point x ∈ X, then ℑ δ-converges to a point 
x. 
Proof: Suppose that ℑ PS-converges to a point x ∈ X. Let V be 
any open set containing x, then Int(Cl(V)) ∈ RO(X). Since 
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RO(X) ⊆ PSO(X) in general, so Int(Cl(V)) ∈ PSO(X). Since ℑ PS-
converges to a point x ∈ X, there exists an F ∈ ℑ such that F ⊆ 
Int(Cl(V)). This shows that ℑ δ-converges at a point x. 
 
Lemma 3.10: Let ℑ be a filter base in a topological space (X,τ). 
If ℑ PS-accumulates to a point x ∈ X, then ℑ δ-accumulates to 
x. 
Proof: The proof is similar to Lemma 3.9. 
 
Proposition 3.11: Let ℑ be a filter base in a topological space 
(X,τ) and E is any semi-closed set containing x. If there exists 
an F ∈ ℑ such that F ⊆ E (resp., F ⊆ PSCl(E)), then ℑ PS-
converges (resp., PS-θ-converges) to a point x ∈ X. 
Proof: Let V be any PS-open set containing x, then for each x ∈ 
V, there exists a semi-closed set E such that x ∈ E ⊆ V. By hy-
pothesis, there exists an F ∈ ℑ such that F ⊆ E ⊆ V (resp., F ⊆ 
PSCl(E) ⊆ PSCl(V)) which implies that F ⊆ V (resp., F ⊆ 
PSCl(V)). Hence ℑ PS-converges (resp., PS-θ-converges) to a 
point x ∈ X. 
 
Proposition 3.12: Let ℑ be a filter base in a topological space 
(X,τ) and E is any semi-closed set containing x. If there exists 
an F ∈ ℑ such that F ∩ E ≠ φ (resp., F ∩ PSCl(E) ≠ φ), then ℑ is 
PS-accumulation (resp., PS-θ-accumulation) to a point x ∈ X. 
Proof: The proof is similar to Proposition 3.11. 
 
Theorem 3.13: If a function f : X → Y is PS-continuous (resp., 
almost PS-continuous), then for each point x ∈ X and each fil-
ter base ℑ in X PS-converging to x, the filter base f (ℑ) is con-
vergent (resp., δ-convergent) to f (x). Furthermore, if X is sub-
maximal, then the converse also holds. 
Proof: Suppose that x belongs to X and ℑ is any filter base in X 
which PS-converges to x. By the PS-continuity (resp., almost 
PS-continuity) of f, for any open set V in Y containing f (x), 
there exists U ∈ PSO(X) containing x such that f (U) ⊆ V (resp., 
f (U) ⊆ Int(Cl(V))). But ℑ is PS-convergent to x in X, then there 
exists an F ∈ ℑ such that F ⊆ U. It follows that f (F) ⊆ V (resp., f 
(F) ⊆ Int(Cl(V))). This means that f (ℑ) is convergent (resp., δ-
convergent) to f (x). 
Now suppose that X is submaximal. Let x be a point in X and 
V any open set containing f (x). Since X is submaximal, then 
every PS-open set of X is open in X. If we set ℑ = PSO(X) con-
taining x, then ℑ will be a filter base which PS-converges to x. 
So there exists U in ℑ such that f (U) ⊆ V (resp., f (U) ⊆ 
Int(Cl(V))). Therefore, f is PS-continuous (resp., almost PS-
continuous). 
Definition 3.14: We say that a topological space (X,τ) is PS-
compact if for every PS-open cover {Vα: α ∈ Δ} of X, there ex-
ists a finite subset Δ0 of Δ such that X = ∪{Vα: α ∈ Δ0}. 
 
Theorem 3.15: If every semi-closed cover of a space X has a 
finite subcover, then X is PS-compact. 
Proof: Let {Vα: α ∈ Δ} be any PS-open cover of X, then for each 

x ∈ X, there exists α ∈ Δ0, x ∈ Vα(x), there exists a semi-closed 
set Fα(x) such that x ∈ Fα(x) ⊆ Vα(x). So the family {Fα(x): x ∈ X} is 
a cover of X by semi-closed set, then by hypothesis, this family 
has a finite subcover such that X = {Fα(xi): i = 1, 2, …, n} ⊆ {Vα(xi): 
i = 1, 2, …, n}. Therefore, X = {Vα(xi): i = 1, 2, …, n}. Hence X is 
PS-compact. 
 

The following lemma shows the relation between strongly 
compact and PS-compact spaces. 
Lemma 3.16: If a topological space (X,τ) is strongly compact, 
then it is PS-compact. 
Proof: Let {Vα: α ∈ Δ} be any PS-open cover of X. Then {Vα: α 
∈ Δ} is a preopen cover of X. Since X is strongly compact, there 
exists a finite subset Δ0 of Δ such that X = ∪{Vα: α ∈ Δ0}. 
Hence X is PS-compact. 
 

The converse of Lemma 3.16 is not true as shown by the 
next example. 
Example 3.17: Let X = ℜ with the topology τ = {φ, X, {0}}. Then 
(X,τ) is not strongly compact [4, Example 2.6 (iii)]. Since the 
space X is hyperconnected, then by Lemma 2.1 (4), PSO(X) = 
{φ, X}. Then (X,τ) is PS-compact. 
 
Theorem 3.18: Every semi-T1 and PS-compact space is strongly 
compact. 
Proof: Suppose that X is semi-T1 and PS-compact space. Let 
{Vα: α ∈ Δ} be any preopen cover of X. Then for every x ∈ X, 
there exists α(x) ∈ Δ such that x ∈ Vα(x). Since X is semi-T1, by 
Lemma 2.1 (1), the family {Vα: α ∈ Δ} is a PS-open cover of X. 
Since X is PS-compact, there exists a finite subset Δ0 of Δ in X 
such that X = ∪{Vα: α ∈ Δ0}. Hence X is strongly compact. 
Corollary 3.19: Let a space X be semi-T1. Then X is PS-compact 
if and only if X is strongly compact. 
Proof: Follows from Lemma 3.16 and Theorem 3.18. 
Lemma 3.20: If a topological space (X,τ) is PS-compact, then it 
is nearly compact. 
Proof: Let {Vα: α ∈ Δ} be any regular open cover of X. Then 
{Vα: α ∈ Δ} is a PS-open cover of X. Since X is PS-compact, 
there exists a finite subset Δ0 of Δ such that X = ∪{Vα: α ∈ Δ0}. 
Hence X is nearly compact. 
 

The following example shows that the converse of the 
above lemma is not true. 
Example 3.21: The unit interval [0,1] with the usual topology is 
compact [4, Example 2.6 (ii)] and hence it is nearly compact, 
but not PS-compact. 
Corollary 3.22: If a topological space (X,τ) is PS-compact, then 
it is quasi-H-closed. 
Proof: Follows from Lemma 3.20 and the fact that each nearly 
compact space is quasi-H-closed. 
 

In general, PS-compact spaces and compact spaces are not 
comparable as shown by the following two examples: 
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Example 3.23: Let X = (0, 1) with the topology τ consisting of 
φ, X and all subsets of X of the form (0,1-1/n), where n = 2, 3, 
… . Then (X,τ) is not compact (see [22]). Since the space X is 
hyperconnected, then by Lemma 2.1 (4), the family of PS-open 
sets are only φ and X. Therefore, X is PS-compact. 
Example 3.24: Any closed interval [a,b], where a, b ∈ ℜ with 
the relative usual topology is compact, but it is not PS-
compact. 
 
Proposition 3.25: Let a topological space (X,τ) is locally indi-
screte. Then X is compact if and only if X is PS-compact. 
Proof: Follows from Lemma 2.1 (2). 
 
Lemma 3.26: Let a topological space (X,τ) be s-regular. If X is 
PS-compact, then it is compact. 
Proof: Follows from Lemma 2.1 (3). 
 

From Lemma 3.16, Lemma 3.20 and Corollary 3.22, we ob-
tain the following diagram of implications. 
   strongly compact  ⇒  PS-compact  ⇒  nearly compact 
              ⇓                                                           ⇓ 
     α-compact      ⇒      compact     ⇒     quasi-H-closed 
                                   Diagram 3.1 
 
Theorem 3.27: For any topological space (X,τ). The following 
statements are equivalent: 
1) (X,τ) is PS-compact, 
2) Every maximal filter base ℑ in X PS-converges to some point 
x ∈ X, 
3) Every filter base ℑ in X PS-accumulates to some point x ∈ X, 
4) For every family {Fα: α ∈ Δ} of PS-closed subsets of X such 
that ∩{Fα: α ∈ Δ} = φ, there exists a finite subset Δ0 of Δ such 
that ∩{Fα: α ∈ Δ0} = φ. 
Proof: (1) ⇒ (2): Suppose that X is PS-compact space and let ℑ 
= {Fα: α ∈ Δ} be a maximal filter base. Suppose that ℑ does not 
PS-converges to any point of X. Since ℑ is maximal, by Propo-
sition 3.4, ℑ does not PS-accumulates to any point of X. This 
implies that for every x ∈ X, there exists a PS-open set Vx and 
an Fα(x) ∈ ℑ such that Fα(x) ∩ Vx = φ. The family {Vx: x ∈ X} is a 
PS-open cover of X and by hypothesis, there exists a finite 
number of points x1, x2, …, xn of X such that X = ∪{V(xi): i = 1, 
2, …, n}. Since ℑ is a filter base on X, there exists an F0 ∈ ℑ 
such that F0 ⊆ ∩{Fα(xi): i = 1, 2, …, n}. Hence F0 ∩ V(xi) = φ for i = 
1, 2, …, n. Which implies that F0 ∩ {∪V(xi): i = 1, 2, …, n} = F0 ∩ 
X = φ. Therefore, we obtain F0 = φ. Contracting the fact that F0 
≠ φ. 
(2) ⇒ (3): Let ℑ be any filter base on X. Then, there exists a 
maximal filter base ℑ0 such that ℑ ⊆ ℑ0. By hypothesis, ℑ0 PS-
converges to some point x ∈ X. For every F ∈ ℑ and every PS-
open set V containing x, there exists an F0 ∈ ℑ0 such that F0 ⊆ 
V, hence φ ≠ F0 ∩ F ⊆ V ∩ F. This shows that ℑ PS-accumulates 
at x. 
(3) ⇒ (4): Let {Fα: α ∈ Δ} be a family of PS-closed subsets of X 

such that ∩{Fα: α ∈ Δ} = φ. Suppose that every finite subfamily 
∩{Fαi: i = 1, 2, …, n} ≠ φ. Therefore ℑ = {∩Fαi: i = 1, 2, …, n, Fαi 
∈ {Fα: α ∈ Δ}} form a filter base on X. By hypothesis, ℑ PS-
accumulates to some point x ∈ X. This implies that for every 
PS-open set V containing x, Fα ∩ V ≠ φ for every Fα ∈ ℑ and 
every α ∈ Δ. Since x ∉ ∩Fα there exists α0 ∈ Δ such that x ∉ 
Fα0. Hence, x is contained in the PS-open set X\Fα0 and Fα0 ∩ 
X\Fα0 = φ. Contracting the fact that ℑ PS-accumulates to x. 
(4) ⇒ (1): Let {Vα: α ∈ Δ} be a PS-open cover of X. Then {X\Vα: 
α ∈ Δ} is a family of PS-closed subsets of X such that ∩{X\Vα: 
α ∈ Δ} = φ. By hypothesis, there exists a finite subset Δ0 of Δ 
such that ∩{X\Vα: α ∈ Δ0} = φ. Hence X = ∪{Vα: α ∈ Δ0}. This 
shows that X is PS-compact. 

4 PS-SETS AND PS-COMPACT SUBSPACES 
In this section, we introduce a new class of topological space 
called PS-set and PS-compact subspace. 
Definition 4.1: A subset A of a topological space (X,τ) is said to 
be PS-set (resp., PS-compact subspace) if for every cover {Vα: α 
∈ Δ} of A by PS-open subsets of (X,τ) (resp., by PS-open subsets 
of A), there exists a finite subset Δ0 of Δ such that A ⊆ ∪{Vα: α 
∈ Δ0} (resp., A = ∪{Vα: α ∈ Δ0}). 
Lemma 4.2: A subset A of a space X is PS-set (resp., PS-compact 
subspace) if and only if for every cover of A by PS-open sets of 
X (resp., by PS-open sets of A) has a finite subcover. 
Proof: The proof follows directly from Definition 4.1. 
 

Now we will give several equivalent conditions to PS-sets 
(resp., PS-compact subspaces) of topological spaces and also 
we give some other conditions each of which makes a given 
topological space a PS-compact space. 

 
Theorem 4.3: Let A be a subset of a topological space (X,τ). If 
every cover of A by semi-closed subsets of X (resp., by semi-
closed subsets of A) has a finite subcover, then A is PS-set 
(resp., PS-compact subspace). 
Proof: Let {Vα: α ∈ Δ} be a cover of A by PS-open subset of X 
(resp., by PS-open subsets of A), then for each x ∈ X, there ex-
ists α ∈ Δ0, x ∈ Vα(x), there exists a semi-closed set Fα(x) such 
that x ∈ Fα(x) ⊆ Vα(x). So the family {Fα(x): x ∈ X} is a cover of A 
by semi-closed subsets of X (resp., by semi-closed subsets of 
A), then by hypothesis, this family has a finite subcover such 
that A ⊆ ∪{Fα(xi): i = 1, 2, …, n} ⊆ ∪{Vα(xi): i = 1, 2, …, n} (resp., A 
= ∪{Fα(xi): i = 1, 2, …, n} ⊆ ∪{Vα(xi): i = 1, 2, …, n}. Therefore, A ⊆ 
∪{Vα(xi): i = 1, 2, …, n} (resp., A = ∪{Vα(xi): i = 1, 2, …, n}. Hence 
A is PS-set (resp., PS-compact subspace). 
Theorem 4.4: For any topological space (X,τ). The following 
statements are equivalent: 
1) A is PS-set (resp., PS-compact subspace), 
2) Every maximal filter base ℑ on X which meets A PS-
converges to some point of A, 
3) Every filter base ℑ on X which meets A PS-accumulates to 
some point x ∈ X, 
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4) For every family {Fα: α ∈ Δ} of PS-closed subsets of (X,τ) 
such that [∩{Fα: α ∈ Δ}] ∩ A = φ, there exists a finite subset Δ0 
of Δ such that [∩{Fα: α ∈ Δ0}] ∩ A = φ. 
Proof: Similar to Theorem 3.27. 
 
Theorem 4.5: A space X is PS-compact if and only if every 
proper PS-closed set of X is PS-set. 
Proof: Necessity: Let F be any proper PS-closed set of X. Let 
{Vα: α ∈ Δ} be a cover of F and Vα ∈ PSO(X) for every α ∈ Δ. 
Since F is PS-closed set, then X\F is PS-open set. So the family 
{Vα: α ∈ Δ} ∪ X\F is a PS-open cover of X. Since X is PS-
compact, there exists a finite subset Δ0 of Δ such that X = ∪{Vα: 
α ∈ Δ0} ∪ (X\F). Therefore, we obtain F ⊆ ∪{Vα: α ∈ Δ0}. 
Hence F is PS-set. 
Sufficiency: Let {Vα: α ∈ Δ} be a cover of X and Vα ∈ PSO(X) 
for every α ∈ Δ. Suppose that X ≠ Vα0 ≠ φ for every α0 ∈ Δ. 
Then X\Vα0 is a proper PS-closed subset of X. Therefore, by 
hypothesis, there exists a finite subset Δ0 of Δ such that X\Vα0 

⊆ ∪{Vα: α ∈ Δ0}. Therefore, we obtain X = ∪{Vα: α ∈ Δ0 ∪ 
{α0}}. Which shows that X is PS-compact. 
 
Theorem 4.6: If a space X is PS-compact and A is both regular 
open and PS-closed subset of X, then A is PS-compact sub-
space. 
Proof: Let {Aα: α ∈ Δ} be any cover of A by PS-open set of A. 
Since A ∈ RO(X), by Lemma 2.2 (1), Aα ∈ PSO(X) for each α ∈ 
Δ. Since A is a PS-closed subset of X, then X\A ∈ PSO(X) and 
{Aα: α ∈ Δ} ∪ X\A = X and {Aα: α ∈ Δ} ∪ X\A forms a PS-open 
cover of X. Since X is PS-compact, there exists a finite subset Δ0 
of Δ such that X = ∪{Aα: α ∈ Δ0} ∪ X\A, hence A = ∪{Aα: α ∈ 
Δ0}. Therefore, A is PS-compact subspace. 
 
Theorem 4.7: If there exists either a proper regular semi-open 
or a proper preregular subset A of a topological space (X,τ) 
such that A and X\A are PS-compact subspace, then X is also 
PS-compact. 
Proof: Let {Vα: α ∈ Δ} be any PS-cover cover of X. Since A is 
either regular semi-open or preregular subset of X, then for 
every α ∈ Δ, by Lemma 2.2 (3), we have A ∩ Vα ∈ PSO(A). 
Therefore, {A ∩ Vα: α ∈ Δ} is a PS-open cover of A. Since A is 
PS-compact subspace, there exists a finite subset Δ0 of Δ such 
that A = ∪{A ∩ Vα: α ∈ Δ0}. Therefore, we have A ⊆ ∪{Vα: α ∈ 
Δ0}. Since A is either regular semi-open or preregular subset of 
X, then X\A is also either regular semi-open or preregular. By 
the same way we can find a finite subset Δ1 of Δ such that X\A 
⊆ ∪{Vα: α ∈ Δ1}. Hence X = ∪{Vα: α ∈ Δ0 ∪ Δ1}. This shows 
that X is PS-compact. 
 
Theorem 4.8: If there exists a proper clopen subset A of a topo-
logical space (X,τ) such that A and X\A are PS-sets, then X is 
also PS-compact. 
Proof: Let {Vα: α ∈ Δ} be any PS-cover cover of X. Since A is 
clopen subset of X, then A is regular open subset of X. There-

fore, for every α ∈ Δ, by Lemma 2.2 (2), we have A ∩ Vα ∈ 
PSO(X). Therefore, {A ∩ Vα: α ∈ Δ} is a cover of A by PS-open 
sets of X. Since A is PS-set, there exists a finite subset Δ0 of Δ 
such that A ⊆ ∪{Vα: α ∈ Δ0} ∩ A ⊆ ∪{Vα: α ∈ Δ0}. Since A is 
clopen subset of X, then X\A is also clopen. By the same way 
we can find a finite subset Δ1 of Δ such that X\A ⊆ ∪{Vα: α ∈ 
Δ1}. Hence X = ∪{Vα: α ∈ Δ0 ∪ Δ1}. This shows that X is PS-
compact. 
 
Theorem 4.9: If a regular open set G of a space X is PS-set, then 
G is PS-compact subspace. 
Proof: Suppose that G ∈ RO(X) and G is PS-set. Let {Vα: α ∈ Δ} 
be a cover of G and Vα ∈ PSO(G) for every α ∈ Δ. Since G ∈ 
RO(X), then by Lemma 2.2 (1), we have Vα ∈ PSO(X) for every 
α ∈ Δ. Since G is PS-set, there exists a finite subset Δ0 of Δ such 
that G ⊆ ∪{Vα: α ∈ Δ0}, which implies that G is PS-compact 
subspace. 
 
Theorem 4.10: If either G ∈ RSO(X) or G ∈ τ or G is a preregu-
lar or an open set G of a space X is PS-compact subspace, then 
G is PS-set. 
Proof: Suppose that either G ∈ RSO(X) or G ∈ τ or G is a pre-
regular, and {Vα: α ∈ Δ} be a cover of G and Vα ∈ PSO(X) for 
every α ∈ Δ. Since either G ∈ RSO(X) or G ∈ τ or G is a prere-
gular, then for every α ∈ Δ, by Lemma 2.2 (3), we have G ∩ Vα 
∈ PSO(G). Therefore, the family {G ∩ Vα: α ∈ Δ} is a PS-open 
cover of G. Since G is PS-compact subspace, there exists a finite 
subset Δ0 of Δ such that G = ∪{G ∩ Vα: α ∈ Δ0}. Therefore, G ⊆ 
∪{Vα: α ∈ Δ0}, which implies that G is PS-set. 
Corollary 4.11: A regular open set G of a space X is PS-set if 
and only if G is PS-compact subspace. 
 
Proof: This is an immediate consequence of Theorem 4.9 and 
Theorem 4.10. 
Theorem 4.12: Let A and B be subsets of a space X. If A is PS-
closed set and B is PS-set, then A ∩ B is PS-set. 
Proof: Let {Vα: α ∈ Δ} be any cover of A ∩ B by PS-open sub-
sets of X. Since A is PS-closed set, then X\A is PS-open. So B ⊆ 
∪{Vα: α ∈ Δ} ∪ X\A and the family {Vα: α ∈ Δ} ∪ X\A is a PS-
open cover of B. Since B is PS-set, then there exists a finite sub-
set Δ0 of Δ such that B ⊆ ∪{Vα: α ∈ Δ0} ∪ (X\A). Therefore, we 
obtain A ∩ B ⊆ ∪{Vα: α ∈ Δ0}. Hence A ∩ B is PS-set. 
 
Theorem 4.13: Let Y be any regular open subspace of a space 
X and A be any subset of Y. Then A is PS-set of X if and only if 
A is PS-set of Y. 
Proof: Necessity: Suppose that A is PS-set of X and Y ∈ RO(X). 
Let {Vα: α ∈ Δ} be a cover of A and Vα ∈ PSO(Y) for every α ∈ 
Δ. Since Y ∈ RO(X). Then by Lemma 2.2 (4), there exists a PS-
open set Uα of X such that Vα = Uα ∩ Y for every α ∈ Δ. So A ⊆ 
∪{Vα: α ∈ Δ} = ∪{Uα ∩ Y: α ∈ Δ} ⊆ ∪{Uα: α ∈ Δ}. Then the 
family {Uα: α ∈ Δ} is a cover of A and Uα ∈ PSO(X). Since A is 
PS-set of X, there exists a finite subset Δ0 of Δ such that A ⊆ 
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∪{Uα: α ∈ Δ0}. Since A ⊆ Y. Hence A ⊆ ∪{Uα ∩ Y: α ∈ Δ0} = 
∪{Vα: α ∈ Δ0}. Therefore, A is PS-set of Y. 
Sufficiency: Suppose that A is PS-set of Y and Y ∈ RO(X). Let 
{Uα: α ∈ Δ} be a cover of A and Uα ∈ PSO(X) for every α ∈ Δ. 
Since A ⊆ Y. Then A ⊆ ∪{Uα: α ∈ Δ} ∩ Y = ∪{Uα ∩ Y: α ∈ Δ}. 
Since Y ∈ RO(X). Then by Lemma 2.2 (4), there exists a PS-
open set Vα of Y such that Vα = Uα ∩ Y for every α ∈ Δ. Then 
the family {Vα: α ∈ Δ} is a cover of A and Vα ∈ PSO(Y). Since A 
is PS-set of Y, there exists a finite subset Δ0 of Δ such that A ⊆ 
∪{Vα: α ∈ Δ0} = ∪{Uα ∩ Y: α ∈ Δ0} ⊆ ∪{Uα: α ∈ Δ0}. Therefore, 
A is PS-set of X. 

5 RESULTS ON IMAGES OF PS-COMPACTNESS 
Theorem 5.1: If a function f : X → Y is PS-continuous (resp., 
almost PS-continuous) and A is PS-set, then f (A) is compact 
(resp., N-closed) relative to Y. 
Proof: Let {Gα: α ∈ Δ} be any cover of f (A) by open sets of Y. 
For each x ∈ A, there exists an α(x) ∈ Δ such that f (x) ∈ Gα(x). 
Since f is PS-continuous (resp., almost PS-continuous), there 
exists a PS-open set Ux of X containing x such that f (Ux) ⊆ 
Gα(x) (resp., f (Ux) ⊆ Int(Cl(Gα(x)))). Then the family {Uα: x ∈ A} 
is a PS-open cover of A. For some finite subset A0 of A, we 
have A ⊆ ∪{Ux: x ∈ A0}. Therefore, f (A) ⊆ ∪{Gα(x): x ∈ A0} 
(resp., f (A) ⊆ ∪{Int(Cl(Gα(x))): x ∈ A0}). This shows that f (A) is 
compact (resp., N-closed) relative to Y. 
Corollary 5.2: If f : X → Y is PS-continuous (resp., almost PS-
continuous) surjection function and X is PS-compact, then Y is 
compact (resp., nearly compact). 
 
Proposition 5.3: If a function f : X → Y is PS-continuous (resp., 
almost PS-continuous), A is PS-set and F is PS-closed subset of 
X, then f (A ∩ F) is compact (resp., N-closed) relative to Y. 
Proof: Follows from Theorem 5.1 and Theorem 4.12. 
 
Proposition 5.4: If f : X → Y is a precontinuous (resp., almost 
precontinuous) surjection function and X is semi-T1 and PS-
compact space, then Y is compact (resp., nearly compact). 
Proof: Follows from Theorem 5.1 and Corollary 3.19. 
 
Proposition 5.5: If f : X → Y is a PS-continuous (resp., almost 
PS-continuous) surjection function and X is locally indiscrete 
and compact space, then Y is compact (resp., nearly compact). 
Proof: Follows from Theorem 5.1 and Proposition 3.25. 
 
Proposition 5.6: If f : X → Y is a continuous (resp., almost con-
tinuous) surjection function and X is locally indiscrete and PS-
compact space, then Y is compact (resp., nearly compact). 
Proof: Follows from Theorem 5.1 and Proposition 3.25. 
 
Proposition 5.7: If f : X → Y is a continuous (resp., almost con-
tinuous) surjection function and X is s-regular and PS-compact 
space, then Y is compact (resp., nearly compact). 
Proof: Follows from Theorem 5.1 and Lemma 3.26. 

 
Proposition 5.8: If f : X → Y is a θs-continuous surjection func-
tion and X is extremally disconnected and PS-compact space, 
then Y is compact. 
Proof: Follows from Theorem 5.1 and Theorem 2.4. 
 
Theorem 5.9: If f : X → Y is a continuous and open function. If 
A is PS-set, then f (A) is PS-set. 
Proof: Let {Vα: α ∈ Δ} be any cover of f (A) by PS-open sets of 
Y. Since f is continuous and open function. By Theorem 2.3, {f 
−1(Vα): α ∈ Δ} is a cover of A by PS-open sets of X. Since A is PS-
set, there exists a finite subset Δ0 of Δ such that A ⊆ ∪{f −1(Vα): 
α ∈ Δ0}. Thus, we have f (A) ⊆ ∪{Vα: α ∈ Δ0}. This shows that f 
(A) is PS-set. 
Corollary 5.10: If X is a PS-compact space and f : X → Y is a 
continuous and open surjection function, then Y is PS-
compact. 

6 CONCLUSION 
In this paper, we introduce PS-compact spaces via PS-open sets 
which are lies strictly between the classes of strongly compact 
and nearly compact spaces, but it is not comparable with 
compact space. 
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